

Linear Sequences: the nth term

- 1. Find the first five terms of the sequence with n th term and state if the sequence is linear:
 - a. 3n 5
 - b. 10 4n
 - c. $2^{n^{-2}}$
- 2. Find the formula for the n th term of the following sequences:
 - a. 3, 6, 9, 12, 15, ...
 - b. 8, 14, 20, 26, 32, ...
 - c. 6, 13, 20, 27, 34, ...
 - d. 7, 16, 25, 34, 43, ...
 - e. 7, 5, 3, 1, -1, ...
 - f. $\frac{1}{2}$, $\frac{7}{6}$, $\frac{11}{6}$, $\frac{5}{2}$, $\frac{19}{6}$, ...
- 3. Hence determine (with working!) the 200th term of each of the sequences from Question 2.
- 4. Determine if the indicated term is in the sequence. Ensure you show working to explain why.
 - a. Is 106 in the sequence with nth term 4n-2?
 - b. Is 1009 in the sequence 4, 7, 10, 13, 16, ...?
 - c. Is 1500 in the sequence 4, 10, 16, 22, 28, ...?

Solutions

1. Find the first five terms of the sequence with *n*th term:

_
ь.
.)

linear

b.
$$10 - 4n$$

linear

600

6

c.
$$2^{n^2}$$

2, 16, 512, 65536, 33554432 non-linear

2. Find the formula for the nth term of the following sequences:

a.	3, 6, 9, 12, 15,	3 11	600
b.	8, 14, 20, 26, 32,	6n+2	1202
c.	6, 13, 20, 27, 34,	7n-1	1399
d.	7, 16, 25, 34, 43,	9n-2	1798
	7, 5, 3, 1, -1,	9-2n	-391
f.	$\frac{1}{2}$, $\frac{7}{6}$, $\frac{11}{6}$, $\frac{5}{2}$, $\frac{19}{6}$,	<u>4</u> n - <u>1</u>	<u>799</u>

- 3. Hence determine (with working!) the 200th term of each of the sequences from Question 2.
- 4. Determine if the indicated term is in the sequence. Ensure you show working to explain why.
 - a. Is 106 in the sequence with nth term 4n-2? 422
 - b. Is 1009 in the sequence 4, 7, 10, 13, 16, ...? **3028**
 - c. Is 1500 in the sequence 4, 10, 16, 22, 28, ...? **8998**

